4

Effect of Fertigation on Soil Salinization and Aggregate Stability

J. M. Moreira Barradas¹; A. Abdelfattah²; S. Matula³; and F. Dolezal⁴

Abstract: Physicochemical properties of a Haplic Chernozem soil were measured while applying fertigation in a natural grassland 5 6 during the growing season in a hemiboreal climate with irrigation management based on the decision support system-fertigation simulator 73 (DSS-FS) model. The experimental field was divided into four parcels which were exposed to four different irrigation treatments: fertigation with nutritive solution A [electrical conductivity (EC) = 2 mS \cdot cm⁻¹, pH = 6), fertigation with nutritive solution B (EC = 1 mS \cdot cm⁻¹, 8 pH = 6), irrigation with raw water without any injected fertilizers (EC = 0.27 mS \cdot cm⁻¹, pH = 6.5), and control parcel (no treatment). 9 10 Rainfall effect on soil desalinization through salt leaching was monitored by comparing the evolution of soil electrical conductivity during and after the growing season. The soil electrical conductivity of the chemigated parcels (parcels A and B) was higher than the control parcels 11 (parcels C and D) at the end of the growing season. This difference decreased significantly, becoming negligible after the winter due to 12 an efficient desalinization effect of rain and snow. DOI: 10.1061/(ASCE)IR.1943-4774.0000806. © 2014 American Society of Civil 13 14 Engineers.

Author keywords: Irrigation; Chemigation; Fertigation; Soil salinization; Remediation of soil salinization; Aggregate stability; Central Europe; Lowland climate.

17 Introduction

18 The injection of nutritive salts (soluble fertilizers), pesticides, and other chemicals into the water pumped through a given irrigation 19 system, which is commonly known as chemigation, allows precise 20 control of the concentration and balance of nutrients. Nevertheless, 21 22 it is a rather complicated process as many factors must be controlled to produce good and environmentally safe fertigation prac-23 tices (Moreira Barradas et al. 2012). Irrigation with dissolved 24 fertilizers (if not correctly managed) has an inherent potential to 25 26 cause excessive soil salinity with a consequent negative effect on both plant and soil properties. After irrigation, the water added 27 to the soil is used by the crop or evaporates directly from the moist 28 soil. The salt, however, is left behind in the soil. If not removed, it 29 accumulates in the soil; this process is called salinization (Brower 30 31 et al. 1985). Salts are added to the soil with each irrigation. These

¹Postdoctoral Researcher, Dept. of Water Resources, Faculty of Agrobiology, Food and Natural Resources, Czech Univ. of Life Sciences Prague, Kamycka 129, 165 21 Prague 6, Suchdol, Czech Republic (corresponding author). E-mail: barradas@af.czu.cz

²M.Sc. Student, Dept. of Water Resources, Faculty of Agrobiology, Food and Natural Resources, Czech Univ. of Life Sciences Prague, Kamycka 129, 165 21 Prague 6, Suchdol, Czech Republic. E-mail: falconcrest@yahoo.com

³Professor, Dept. of Water Resources, Faculty of Agrobiology, Food and Natural Resources, Czech Univ. of Life Sciences Prague, Kamycka 129, 165 21 Prague 6, Suchdol, Czech Republic. E-mail: matula@af .czu.cz

⁴Senior Lecturer, Dept. of Water Resources, Faculty of Agrobiology, Food and Natural Resources, Czech Univ. of Life Sciences Prague, Kamycka 129, 165 21 Prague 6, Suchdol, Czech Republic. E-mail: dolezalf@af.czu.cz

Note. This manuscript was submitted on February 28, 2014; approved on July 24, 2014 **No Epub Date**. Discussion period open until 0, 0; separate discussions must be submitted for individual papers. This paper is part of the *Journal of Irrigation and Drainage Engineering*, © ASCE, ISSN 0733-9437/(0)/\$25.00.

salts will reduce crop yield if they accumulate in the rooting depth to damaging concentrations (Ayers and Westcot 1985).

The risk of soil salinity formation is always greater in finetextured (heavy) soils than in coarse-textured soils. This is because sandy soils naturally have larger pores that allow for more rapid drainage. In addition, some salts cause toxic effects in plants and can reduce plant metabolism and growth (Allen et al. 1998).

Any remediation of salt-affected soils requires evaluation and monitoring of salinity. Soil salinity is measured by electrical conductivity (EC) of the soil solution (aqueous extracts of soil). The previous method requires direct sampling of the soil at a given time step and relies on the collection of soil samples and the measurement of EC on aqueous soil extracts. Therefore, it appears difficult to monitor the salt-content changes over time with a fine spatial resolution, because collecting soil samples is intrusive and disturbs the studied environment (soil structure and water flows). Moreover, soil sampling is time consuming and often expensive.

Soil salinity also can be estimated indirectly from measurement of the bulk electrical resistivity (ER, Ω m) or from its inverse, the apparent electrical conductivity (ECa, dS m⁻¹) (Rhoades et al. 1999; Corwin and Lesch 2003). The development of soil sensor systems or geophysical methods for measuring ECa or ER facilitates the collection of larger amounts of spatial data using a less expensive, simpler, and less laborious technique (Adamchuck and Viscarra Rossel 2010). These sensors may or may not be invasive or mounted on vehicles for prospecting. Indeed, it is desirable to use the least invasive method and a fast sensor to collect a large amount of data.

Electrical resistivity sensors and electromagnetic prospections, measuring ER and ECa, respectively, respond to different soil properties, and separation of their effect is often difficult. The bulk ER represents the ability of the soil as a whole to resist an electrical current flux. Many authors (Keller and Frischknecht 1966; Ward 1990) assessed the influence of factors affecting this property, such as clay content, soil moisture, and ionic concentration of soil solution, porosity, and soil temperature. 32

33

34

35

36

37

38

39

40

42

43

44

45

46

47

48

49

5 50

9 52

53

54

55

57

58

59

60

61

62

63

64

66

67

11 12

10<mark>56</mark>

6 8

Another important factor, connected to soil degradation and erosion, is the aggregate stability. Soil aggregates are groups of soil particles that bind to each other more strongly than to adjacent particles. The resistance of the soil against external destructive effects such as rainfall, runoff, and wind is defined as soil aggregate stability and is one of the most important indicators of soil degradation.

Beside the effect of external factors, soil aggregate stability is affected by many intrinsic soil properties, e.g., organic matter,
texture, porosity, etc., and by land use management (Angers and Caron 1998; Barthes and Roose 2002; Cerda 2000; Six et al. 2000).

Under rainfall conditions and low soil aggregate stability, the
breakdown process of aggregates produces small soil particles
that may then be displaced and reoriented into a more continuous
structure, leading to undesirable consequences such as poor
infiltration, surface sealing, and crusting (Boiffin 1984; Loch
and Foley 1994; Moore and Singer 1990; Romkens et al. 1977).
Le Bissonnais (1996) stated that, among the many methods that

have been applied for soil aggregate stability measurement, there is
no single methodology that applies to all soils in any circumstance.
Amezketa (1999) summarizes these reasons as follows:

- Different mechanisms of aggregate destabilization or disintegra tion of soil macroaggregates into microaggregates, such as
 slaking, clay dispersion, and clay swelling;
- 93 Different scales of stability determination; and
- Different types of methodologies with diverse test protocols, based on different disintegration patterns and assessment of the aggregates' capacity to stand against wetting or mechanical forces.

98 20 According to Shindi et al. (2011) and Saad et al. (2011), the
99 content of water-stable aggregates increases with the increase of
100 irrigation water salinity. Bullock et al. (1988) and Lehrsch et al.
101 (1991) studied freezing as one process that affects aggregate sta102 bility. They state that aggregate stability decreases with increasing
103 soil water content at the time of freezing.

104 Material and Methods

The study was conducted from March 27, 2012 to March 7, 2013 at 105 106 the experimental station of the Czech University of Life Sciences 107 21 Prague located at 50°8'N and 14°23'E, 286 m a.s.l. According 108 to Miháliková et al. (2013), the soil is an Udic Haplustoll or 109 Haplic Chernozem of loamy texture on an aeolic loessial substrate, 110 fine earth with 22-32.5% sand, 39.5-54% silt, and 22-28% 111 22 clay, and topsoil with 2.5% DM of total organic carbon and 7.8% DM of calcium carbonate. The boundary between the A 112 113 and C horizons lies at approximately 35 cm with the transitional 114 A/C horizon approximately 10 cm thick. The saturated hydraulic conductivity (100-cm³ cores) is between 6×10^{-4} and 115 11623 $4 \times 10^{-1} \text{ cm} \cdot \text{min}^{-1}$. The total porosity varies between 0.40 117 24 (plough sole) and 0.54 (topsoil) $\text{cm}^3 \cdot \text{cm}^{-3}$ with a mean value 118 of $0.457 \text{ cm}^3 \cdot \text{cm}^{-3}$ (0–100 cm). The average water retention 119 curve obtained from 100-cm³ cores can be approximated, e.g., by 120 the van Genuchten (1980) equation with moisture content at field 121 capacity (θ_{fc}), moisture content at wilting point (θ_{wp}), root depth 122 (Z_r) (considered in this study), and total available water (TAW), 123 given in Table 1. Grass was sown in soil in spring 2009 and 124 has been maintained since then as short lawn. The site was neither 125 irrigated nor tile drained. The grass often suffered from water stress. 126 The terrain is flat. Local short-term ponding of water can be ob-127 served on the soil surface during very intense rainstorms. It quickly 128 disappears as soon as the rain intensity decreases.

 Table 1. Information on Soil Properties Used (Data from Miháliková et al. 2013)

Soil parameter	Value	T1:1
Field capacity Θ_{fc}	34%	T1:2
Wilting point Θ_{wp}	21%	T1:3
Root depth Z_r	30 cm	T1:4
Total available water TAW	39 mm	T1:5

129

130

131

132

133

134

135

2536

137

138

140

141

142

143

144

145

146

147

148

149

150

152

153

154

155

156

158

159

2960

161

162

163

164

165

3066

3167

168

2857

27<mark>5</mark>1

2639

Experimental Field

The total studied area consisted of an area of 8 m^2 divided into four parcels (A, B, C, and D) of 2 m^2 each, submitted to four different irrigation treatments as described later. Each parcel was subdivided into three subparcels—S1 (sample 1), S2 (sample 2), and S3 (sample 3)—allowing the collection of six samples per parcel (three samples at a depth of 10 cm and another three samples at a depth of 20 cm) at three different times after the growing season (September, November, and January) for salinity assessment and evaluation of aggregate stability.

Parcel A was submitted to fertigation with nutritive solution A (EC = 2 mS \cdot cm⁻¹, pH = 6). The combination of nutritive salts was designed by the decision support system–fertigation simulator (DSS-FS) model (Moreira Barradas et al. 2012) to respond to a scenario of a high-demanding crop (in this case, the decision was made to simulate tomato production with an expected production of 80 t/ha). This formulation by itself resulted in a lower salinity than the desired 2 mS/cm; therefore, a combination of sodium bicarbonate and citric acid was added into the nutritive solution to correct the salinity to the desired value of 2 mS \cdot cm⁻¹. The proportion between the concentration of citric acid and bicarbonate was chosen to ensure a final pH of 6.0.

Parcel B was submitted to fertigation with nutritive solution B $(EC = 1 \text{ mS} \cdot \text{cm}^{-1}, \text{pH} = 6)$. The nutrient formulation was made in the same way as described for parcel A, and the salinity was then adjusted to the desired value of $1 \text{ mS} \cdot \text{cm}^{-1}$ with a pH of 6.0 resorting to a combination of citric acid and sodium bicarbonate added into the nutritive solution as in parcel A.

Parcel C was submitted to conventional irrigation without nutrition (natural values of $EC = 0.27 \text{ mS} \cdot \text{cm}^{-1}$ and pH = 6.5 from the source of drinking water supply have not been altered). Parcel D received no treatment (control parcel).

The use of sodium bicarbonate to adjust the salinity is very adequate, as natural water sources such as aquifers, rivers, etc. are (in most cases) rich in bicarbonate. The DSS-FS fertigation simulator (Moreira Barradas et al. 2012) was used to manage the irrigation scheduling [scheduling based on the Food and Agriculture Organization of the United Nations (FAO) methodology described by Allen et al. 2012) and the formulation of the nutritive solution.

The field capacity of the soil is 34%, wilting point 21%, and the 169 fraction of the readily available water (RAW) was considered as 170 50% of the TAW with the roots at 30 cm. The TAW (Allen et al. 171 1998) in this scenario is 39 mm (it was rounded to 40 mm) and the 172 RAW is 20 mm (if estimated using the mentioned values of field 173 capacity and wilting point at a root depth of 30 cm). At the 174 beginning of the experiment, a volume equivalent to the soil total 175 available water at a depth of 30 cm (40 L/m^2) was applied to 176 ensure that the soil was restored to field capacity (assuming that 177 saturation by excess irrigation would rapidly give place to field 178 capacity through gravitational losses). From then on, readily avail-179 able water for the same soil at the same depth (RAW = 20 L/m^2) 180 was applied (until the end of the experiment) every time the 181

182 equivalent amount was estimated to have been depleted by evapo-183 transpiration.

184 TAW and RAW have been estimated according to Allen et al.185 (1998) as follows:

$$TAW = 1,000(\theta_{FC} - \theta_{WP})Z_r$$
(1)

186 where TAW = the total available water in the root zone (mm), θ_{FC} = 187 water content at field capacity (m³ m⁻³), θ_{WP} = water content at 188 welting pint (m³ m⁻³), and Z_r = the rooting depth (mm).

189 In the present research, Eq. (1) was used with the following 190 values: $Z_r = 30$ cm, with $\theta_{FC} = 34\%$ and $\theta_{WP} = 21\%$.

191 RAW is therefore a fraction of TAW (in this case 50%).

192 The accuracy of the estimation of soil water depletion was 193 32 continuously monitored, resorting to 6 5TE sensors installed at 194 a soil depth of 20 cm in parcels A, B, and C.

195 33 The ECH₂O system sensors, data loggers, and software 196 have been used to collect soil information. The 5TE sensor makes three measurements (volumetric water content, temperature, and 197 198 EC) independently and determines volumetric water content 199 (VWC) by measuring the dielectric constant of the media using 200 capacitance/frequency domain technology. Six sensors have been installed at a depth of 20 cm, two at each parcel (parcels A, B, 201 202 and C).

The sensor outputs make it possible to plot the bulk electrical conductivity versus the volumetric water content.

The electrical conductivity of soil solution has been calculated based on the relationship between soil volumetric water content (θ) and bulk electrical conductivity (EC_b), using the following Decagon equation (2012):

$$EC_w = \frac{EC_b}{(0.94 \times \theta^{1.514})} \tag{2}$$

where $EC_w =$ electrical conductivity of soil solution (mS/cm), EC_b = bulk electrical conductivity (mS/cm), and θ = volumetric water content (m³/m³).

The daily weather data were monitored through the meteorological station of the Department of Water Resources experimental site and the Institute of Atmospheric Physics in Suchdol, using TightVNC, a remote control software package. The reference crop evapotranspiration was estimated with the DSS-FS model (Moreira Barradas et al. 2012), which runs the FAO 56 combination equation (Allen et al. 1998).

The soil aggregate stability variation during the experimentation
period was assessed resorting to the wet sieving apparatus,
methodology described by Kemper and Rosenau (1986).

222 A mass of 4.0 g of 2-5-mm air-dried aggregates was placed in the 223 sieves of the wet sieving apparatus and washed in cans with distilled 224 water for 3 min. The cans were afterwards replaced with others con-225 36 taining a dispersing solution (2 g of sodium hexametaphosphate/L), 226 and the sieving continued until only the sand particles (and root frag-227 ments) were left on the sieves. Both sets of cans were placed in an 228 oven and dried at 110°C. After drying, the weight of materials of 229 unstable and stable aggregates was determined. Dividing the weight 230 of the stable aggregates over the total aggregate weight (without sand 231 particles >0.25 mm) gives an index for the aggregate stability.

$$WSA = \frac{W_{ds}}{W_{ds} + W_{dw}}$$
(3)

where WSA = the index of water-stable aggregates (-), W_{ds} = the weight of aggregates dispersed in dispersing solution (g), and W_{dw} = the weight of aggregate dispersed in distilled water (g).

To investigate the effect of soil desalinization (represented in decreasing of soil salinity due to leaching of fertilizers) and evolution of aggregate stability (represented in water stable aggregate), six soil samples (three samples at 10-cm depth and another three at 20-cm depth) were taken from each parcel after the growing season and at three different times during the experimental period: September 15th (end of growing season), November 15th, and January 15th. 235

236

237

238

239

3840

241

242

243

244

245

246

247

248

249

250

251

252

254

255

260

261

262

263

264

265

266

267

268

269

270

271

F1:1

Quantitative determination of total soil salinity by soil ethanol extract conductivity has been measured according to Kemper and Rosenau (1986) as follows: 15 g of dry soil was mixed with 75 mL of ethanol in a plastic flask, the mixture was shaken in a reciprocating shaker for 45 min, then the soil suspension was filtered and the electrical conductivity was measured by a conductometer.

In this work, soil levels of salinization have been classified according to the EC of soil water extracts and the EC of soil ethanol extracts as described by the USDA Salinity Laboratory (1969).

Results and Discussion 253

Electrical Conductivity

Monitoring Using the Decagon ECH₂O System

Fig. 1 shows the 5TE sensors' average measurements of the EC_w 256(EC by water extract) in each parcel (A, B, and C). The results of257Fig. 1 can be compared to the classification according to soil water258extracts (USDA).259

The continuous soil EC_w monitoring by the Decagon ECH_2O system of the 5TE sensors shows that the soil EC_w varied along the experimentation between the classes of no salinity and slightly salinized (according to the USDA classification). At the end of the experimental period, all the parcels (A, B, and C) reported a situation of no salinity.

The peaks of EC shown in Fig. 1 are due to variations in soil moisture content during the experimental season directly affecting the concentration of salts in the soil solution.

The relation between the volumetric soil moisture content θ and the EC_w can be observed in Fig. 2 (related to parcel A at both depths). Parcels B and C were also monitored.

F2:1 **Fig. 2.** Comparing EC_b , EC_w , and θ during the experimental period in F2:2 parcel A at both depths

272 Quantitative Determinations of Soil EC

The measured electrical conductivity in parcels A, B, and C was
higher by the end of the growing season, in September 2012,
but decreased significantly in November and January due to
the desalinization effect of rain and melting snow, becoming
equivalent to the control parcel (parcel D) in November 2013
(2 months later).

As for the laboratory EC testing in ethanol extract, the Figs. 3–5 show the average values of three different samples collected

Fig. 4. Evolution of the average EC (in ethanol extract) in the fourF4:1parcels at 20-cm depthF4:2

on each parcel (subparcels S1, S2, and S3) at two different depths and at three different times (September, November, and January).

The ANOVA results in Table 2 show that, immediately after the irrigation season (September), there were considerable differences between the four parcels, with the fertigated parcels showing higher values of salinity than the nonfertigated parcel and the control parcel.

There were no more significant differences between the EC of the four experimental parcels after November.

EC of Parcel A: High Salinity (2 mS/cm)

At 10-cm depth, the highest and lowest measured EC values were 43.1 and 12.8 μ s/cm in September and January, respectively.

EC (ethanol extract) at all depths

Fig. 5. Evolution of soil EC in ethanol extract; averages at all F5:1 depths F5:2

281

3982

283

284

285

286

287

41 Table 2. ANOVA Results (EC) Generated by Excel 2010 (Microsoft) between the Four Experimental Parcels (A, B, C, and D) for a 95% Confidence Interval

Source of variation	SS	df	MS	F	P-value	F crit
September						
Depth: 10 cm						
Between groups (parcels)	1564.5	3	521.499	4.09685	0.04915	4.06618
Within groups (parcels)	1,018.34	8	127.293	_	_	_
Total	2,582.84	11	_	_	_	—
Depth: 20 cm						
Between groups (parcels)	367.583	3	122.528	20.8174	0.00039	4.06618
Within groups (parcels)	47.0867	8	5.88583	_	_	_
Total	414.669	11		_	_	_
November						
Depth: 10 cm						
Between groups (parcels)	99.8233	3	33.2744	3.18213	0.08462	4.06618
Within groups (parcels)	83.6533	8	10.4567	_	_	_
Total	183.477	11	_	—	_	_
Depth: 20 cm						
Between groups (parcels)	83.3292	3	27.7764	1.75828	0.23261	4.06618
Within groups (parcels)	126.38	8	15.7975	_	_	_
Total	209.709	11	_	—	_	_
January						
Depth: 10 cm						
Between groups (parcels)	16.6825	3	5.56083	1.27811	0.34592	4.06618
Within groups (parcels)	34.8067	8	4.35083	_	_	_
Total	51.4892	11	_	—	_	_
Depth: 20 cm						
Between groups (parcels)	12.35	3	4.11667	1.21975	0.36375	4.06618
Within groups (parcels)	27	8	3.375	_	_	_
Total	39.35	11	_	_	_	_

294 At 20-cm depth, the highest EC value was 25.0 μ s/cm and the low-

est was 11.3 µs/cm in September and January, respectively. 295

296 Therefore, and according to the USDA, there was a situation of slight salinization in September (by the end of the growing season) 297 298 which evolved into a situation of no salinization 4 months later in 299 this parcel.

300 During the period of 4 months after the last fertigation procedures, the EC evolved from 368% of the value of control parcel's 301 302 EC (in September) to 120% of its value (in January) due to natural 303 remediation.

304 EC of Parcel B: Low Salinity (1 mS/cm)

At 10-cm depth, the highest and lowest EC values were 20.8 and 305 306 12.0 μ s/cm in September and January, respectively. At 20-cm 307 depth, the highest EC value was 22.8 μ s/cm and the lowest was 9.2 μ s/cm in September and January, respectively. 308

309 Therefore, and according to the USDA, there was a situation of 310 no salinization through the entire experimental period in this parcel. During the period of 4 months after the last fertigation 311 312 procedures, the EC evolved from 170% of the value of the control 313 parcel's EC (in September) to 112% of its value (in January) due to 314 natural remediation.

EC of Parcel C: No Fertigation 315

316 At 10-cm depth, the highest and lowest EC values were 24.9 and 317 9.7 μ s/cm in September and January, respectively. At 20-cm depth, the highest EC value was 14.5 μ s/cm and the lowest was 318 319 9.4 μ s/cm in September and January, respectively.

320 As expected, and according to the USDA, there was a situation 321 of no salinization through the entire experimental period in this 322 parcel.

323 During the period of 4 months after the last fertigation 324 procedures, the EC evolved in this case from 212% of the value 325 of the control parcel's EC (in September) to 91% of its value 326 (in January) due to natural remediation.

EC of Parcel D: Control Parcel (No Treatment)

At 10-cm depth, the highest and lowest EC values were 11.7 and 328 10.7 μ s/cm in September and January, respectively. At 20-cm depth, the highest EC value was 11.8 μ s/cm and the lowest was 8.6 μ s/cm in September and January, respectively.

As expected, and according to the USDA, there was a situation of no salinization through the entire experimental period in this parcel.

Water-Stable Aggregates

The measurements of WSA indicate that, by the end of the 336 experimental period, both parcels A and C had higher values of 337 water soil aggregate stability than the control parcel, which is a soil 338 improvement in these parcels. In parcel B, this improvement was 339

Fig. 6. Evolution of WSA averages in the four parcels at 10-cm depth F6:1

329 330

327

331 332

333 334

F7:1 Fig. 7. Evolution of WSA averages in the four parcels at 20-cm depth

F8:1 Fig. 8. Evolution of WSA averages of both layers in the four parcels

not as significant as in parcels A and C. Parcels A and C behave collectively as well as parcel B and the control parcel, which suggests that the random effect of the site prevails and there is no effect of fertigation. Nevertheless, the water aggregate stability index of parcels A, B, and C was never lower than the control parcel since November, and there was a clear improvement in parcels A and C (Figs. 6–8). ANOVA (Table 3) also shows significant differences between the applied treatments.

<mark>42</mark>48

44<mark>5</mark>9

Water-stable aggregates increased with salinity; this was compatible with what was stated by Shindi et al. (2011) and Saad et al. (2011): that high-salinity treatment has resulted in the highest WSA.

For both parcels B (conventional salinity treatment) and D (no treatment), WSA decreased at both depths from September to January, and therefore the WSA variation from salt transference between soil layers was not as evident as in the treatments for A and C (Figs. 6-8).

Bullock et al. 1988 and Lehrsch et al. 1991 have indicated that aggregate stability decreases with increasing soil water content at the time of freezing (layers 10 and 20 cm have been frost several times during the experimental season). Therefore, lower values of WSA in samples collected during winter are not a strange result, especially in the control parcel where no other WSA influencing factor has been applied.

Total Dry Matter Production

Even though this article is not particularly focused on the crop365behavior as a consequence of fertigation, the crop presence was366necessary to produce evapotranspiration, and therefore to allow367cycles of irrigation followed by soil water depletion. The crop used368was grass, which is near the FAO 56 standard crop for reference ET369estimation (lawn field).370

The results have shown that the total dry matter (TDM) production for each of the 2-m^2 parcels was as follows: 950, 750, 307, and 372

Table 3. ANOVA Results—WSA between the Four Experimental Parcels for a 95 Confidence Interval

T3:1	Source of variation	SS	df	MS	F	<i>P</i> -value	F crit
T3:2	September						
T3:3	Depth: 10 cm						
T3:4	Between groups (parcels)	0.15468	3	0.05156	15.7647	0.00101	4.06618
T3:5	Within groups (parcels)	0.02616	8	0.00327	_	—	_
T3:6	Total	0.18085	11	—	—	—	
T3:7	Depth: 20 cm						
T3:8	Between groups (parcels)	0.19692	3	0.06564	25.1763	0.0002	4.06618
T3:9	Within groups (parcels)	0.02086	8	0.00261	—	—	
T3:10	Total	0.21778	11	—	—	—	
T3:11	November						
T3:12	Depth: 10 cm						
T3:13	Between groups (parcels)	0.17893	3	0.05964	13.9566	0.00152	4.06618
T3:14	Within groups (parcels)	0.03419	8	0.00427	—	—	
T3:15	Total	0.21312	11	—	—	—	—
T3:16	Depth: 20 cm						
T3:17	Between groups (parcels)	0.18645	3	0.06215	10.4854	0.00381	4.06618
T3:18	Within groups (parcels)	0.04742	8	0.00593	—	—	—
T3:19	Total	0.23387	11	—	—	—	—
T3:20	January						
T3:21	Depth: 10 cm						
T3:22	Between groups (parcels)	0.38667	3	0.12889	37.8525	4.5×10^{-5}	4.06618
T3:23	Within groups (parcels)	0.02724	8	0.00341	—	—	—
T3:24	Total	0.41391	11	—	—	—	—
T3:25	Depth: 20 cm						
T3:26	Between groups (parcels)	0.41631	3	0.13877	38.9721	4×10^{-5}	4.06618
T3:27	Within groups (parcels)	0.02849	8	0.00356	—	—	—
T3:28	Total	0.4448	11	—	—	—	—

160 g in parcels A, B, C, and D, respectively. Note that these results
might have been much different if a more EC-sensitive crop had

375 been used instead of the lawn. In this particularly case (crop 376 and experiment) where excess salinization was not a limiting factor,

377 more saline water resulted in higher dry matter production.

378 Conclusion

Both methods for assessing the EC evolution have shown no
significant differences between the EC values at the end of the
experiments; the higher fluctuations of EC readings were observed
between the irrigation cycles, and those fluctuations are connected
to the EC relation to volumetric water content as shown in Eq. (2).

384 The results on the water aggregates stability test have shown some improvement in parcels A (fertigation with high salinity) 385 386 and C (simple irrigation with no nutrition) during the whole experimental period. In both parcels (A and C), an improvement first at 387 388 the upper layers and later at the lower layers was clear. Parcels B 389 and D followed the same trend with very similar values at the end of 390 the experimental period, but were less stable than the previous par-391 cels (A and C). None of the three treatments reported a lower value 392 of WSA than the control parcel by the end of the experimental 393 period.

There has been no evidence of soil degradation in any of the parameters where this study was focused (salinization and aggregate stability). In the short term, within the time lapse of one growing season, fertigation has improved WSA and had no significant influence on soil EC in the experimental edaphoclimatic conditions.

400 Acknowledgments

401 This study was partly supported by research grant no.
40245 MSM6046070901 sustainable agriculture, quality of agricultural products, sustainable use of natural and landscape resources of the Czech University of Life Sciences in Prague, financed by the Ministry of Education, Youth and Sports of the Czech Republic.
406 The authors would like to thank Rute Paredes (ruteparedes@ gmail.com) for the English review of this work.

408 References

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements: FAO
Irrigation and drainage paper 56, Food and Agriculture Organization, Romea, Italy, 328. Angers, D. E., and Caron, J. (1998). "Plant-induced changes in soil structure: Processes and feedbacks." *Biogeochemistry*, 42(1/2), 55–72. 413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

437

438

439

440

441

48 49

443

444

445

447

448

449

451

452

453

52 53

455

456

457

458

460

461

462

<mark>54</mark>59

5150

5046

<mark>47</mark>36

- Ayers, R. S., and Westcot, D. W. (1985). *Water quality for agriculture: FAO Irrigation and drainage paper 29*, Food and Agriculture Organization, Rome, 174.
- Barthes, B., and Roose, E. (2002). "Aggregate stability as an indicator of soil susceptibility to runoff and erosion: Validation at several levels." *Catena*, 47(2), 133–149.
- Brower, C., Goffeau, A., and Heibloem, M. (1985). *Irrigation water management: Training manual no. 1: Introduction to irrigation*, Food and Agriculture Organization, Rome, Italy.
- Bullock, M. S., Kemper, W. D., and Nelson, S. D. (1988). "Soil cohesion as affected by freezing, water content, time and tillage." *Soil Sci. Soc. Am. J.*, 52(3), 770–776.
- Cerda, A. (2000). "Aggregate stability against water forces under different climates on agriculture land and scrubland in southern Bolivia." *Soil Tillage Res.*, 57(3), 159–166.
- Kemper, W. D., and Rosenau, R. C. (1986). "Aggregate stability and size distribution." *Methods of soil analysis. Part 1. Physical and mineralogical methods*, A. Klute, ed., American Society of Agronomy and Soil Science Society of America, Madison, WI, 425–442.
- Krkavcova, P. (2010). *Physical and hydrophysical properties of experimental soils*, Dept. of Water Resources, Faculty of Agrobiology Food and Natural Resources, Czech Univ. of Life Sciences, Prague, Czech Republic.
- Lehrsch, G. A., Sojka, R. E., Carter, D. L., and Jolley, P. M. (1991). "Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter." *Soil Sci. Soc. Am. J.*, 55(5), 1401–1406.
- Miháliková, M., Matula, S., Doležal, F. (2013). "HYPRESCZ—database of soil hydrophysical properties in the Czech Republic." *Soil Water Res.*, 8, 34–41.
- Moreira Barradas, J. M., Matula, S., and Dolezal, F. (2012). "A decision support system-fertigation simulator (DSS-FS) for design and optimization of sprinkler and drip irrigation systems." *Comput. Electron. Agric.*, 86, 111–119.
- Saad, A. M., Gaheen, S. A., Koriem, M. A., and Abdelfattah, M. I. (2011). "Effect of irrigation water quality on water stable aggregates and saturated hydraulic conductivity of some north delta soils, Egypt." J. Agric. Res. Kafer El-Sheikh Univ., 37(4), 679–697.
- Shinde, D. G., Patel, K. G., Solia, B. M., Patil, R. G., Lambade, B. M., and Kaswala, A. R. (2012). "Effect of different fertigation and irrigation water salinity levels on the various soil properties of Navsari, India." *J. Environ. Res. Dev.*, 7(1A), 381–386.
- Six, J., Elliot, E. T., and Paustian, K. (2000). "Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy." *Soil Sci. Soc. Am. J.*, 64(3), 1042–1049.
- USDA Salinity Laboratory. (1969). Agriculture handbook no.60—Diagnosis and improvement of saline and alkali soils.
- Van Genuchten, M. Th. (1980). "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils." *Soil Sci. Soc. Am. J.*, 44(5), 892–898.

Queries

- 1. Please provide the ASCE Membership Grades for the authors who are members.
- 2. NEW! ASCE Open Access: Authors may choose to publish their papers through ASCE Open Access, making the paper freely available to all readers via the ASCE Library website. ASCE Open Access papers will be published under the Creative Commons-Attribution Only (CC-BY) License. The fee for this service is \$1750, and must be paid prior to publication. If you indicate Yes, you will receive a follow-up message with payment instructions. If you indicate No, your paper will be published in the typical subscribed-access section of the Journal.
- 3. "Decision Support System-Fertigation Simulator" was changed to lowercase (decision support system-fertigation simulator). Change ok? Or is this a proper or product name?
- 4. "...electrical conductivity (EC) of the soil solution; aqueous extracts of soil" was edited as "...electrical conductivity (EC) of the soil solution (aqueous extracts of soil)." Change ok? Or should it be "...electrical conductivity (EC) of the soil solution on aqueous extracts of soil"?
- 5. Is " Ω m" correct as is (in "... measurement of the bulk electrical resistivity (ER, Ω m)...")? Or should it be M Ω (megaohms)?
- 6. Should "ECa" be displayed as "EC_a," similar to EC_b and EC_w? Please clarify throughout.
- 7. Can "dS m^-1" be edited as "dS . m^-1" or "dS/m^-1"?
- 8. The citation Rhoades et al. (1999) is not present in the References list. Please provide the full details for Rhoades et al. (1999), and we will insert it in the References list and link it to this citation.
- 9. The citation Corwin and Lesch 2003 is not present in the References list. Please provide the full details for (Corwin and Lesch 2003), and we will insert it in the References list and link it to this citation.
- 10. The citation Adamchuck and Viscarra Rossel 2010 is not present in the References list. Please provide the full details for (Adamchuck and Viscarra Rossel 2010), and we will insert it in the References list and link it to this citation.
- 11. The citation Ward 1990 is not present in the References list. Please provide the full details for (Ward 1990) and we will insert it in the References list and link it to this citation.
- 12. The citation (Keller and Frischknecht 1966) mentioned in this sentence is not present in the References list. Please provide the full details for (Keller and Frischknecht 1966), and we will insert it in the References list and link it to this citation.
- 13. "... and to land use management" was edited as "... and by land use management." Change ok?
- 14. The citation Boiffin 1984 is not present in the References list. Please provide the full details for (Boiffin 1984) and we will insert it in the References list and link it to this citation.
- 15. The citation Loch and Foley 1994 is not present in the References list. Please provide the full details for (Loch and Foley 1994) and we will insert it in the References list and link it to this citation.
- 16. The citation Moore and Singer 1990 is not present in the References list. Please provide the full details for (Moore and Singer 1990) and we will insert it in the References list and link it to this citation.
- 17. The citation (Romkens et al. 1977) mentioned in this sentence is not present in the References list. Please provide the full details for (Romkens et al. 1977), and we will insert it in the References list and link it to this citation.
- 18. The citation (Le Bissonnais 1996) mentioned in this sentence is not present in the References list. Please provide the full details for (Le Bissonnais 1996), and we will insert it in the References list and link it to this citation.
- 19. The citation (Amezketa 1999) mentioned in this sentence is not present in the References list. Please provide the full details for (Amezketa 1999), and we will insert it in the References list and link it to this citation.
- 20. The citation (Shindi et al. 2011) mentioned in this sentence is not present in the References list. Please provide the full details for (Shindi et al. 2011), and we will insert it in the References list and link it to this citation.
- 21. Please define "a.s.l." (in "... Czech University of Life Sciences Prague located at 50°8'N and 14°23'E, 286 m a.s.l.").

- 22. Please define DM ("top soil with 2.5% DM").
- 23. Can the unit "cm.min^-1" be edited as "cm/min^-1" or "cm · min^-1"? Please clarify for this and similar units throughout.
- 24. Ok to change "plough sole" to "plow sole" (in "The total porosity varies between 0.40 (plough sole)...")?
- 25. "in three different moments" was changed to " at three different times" in "... at three different times after the growing season (September, November, and January)..." Change ok?
- 26. "Parcel A: Submitted to fertigation ... " was edited as "Parcel A was submitted to fertigation ... " Change ok?
- 27. "Parcel B: Submitted to fertigation ... " was edited as "Parcel B was submitted to fertigation ... " Change ok?
- 28. "Parcel C: Submitted to conventional irrigation . . . " was edited as "Parcel C was submitted to conventional irrigation . . . " Change ok?
- 29. "Parcel D: No treatment..." was edited as "Parcel D received no treatment..." Change ok?
- 30. "Food and Agriculture Organization of the United Nations" was added as the definition for FAO. Please confirm this is correct.
- 31. The citation (Allen et al. 2012) mentioned in this sentence is not present in the References list. Please provide the full details for (Allen et al. 2012), and we will insert it in the References list and link it to this citation.
- 32. Is 5TE an abbreviation? If so, please define (in "...resorting to 6 5TE sensors installed...").
- 33. Is ECH_2O a product? Please provide the manufacturer name and location.
- 34. Is "Decagon equation (2012)" a reference citation? If so, please provide the reference.
- 35. Please provide the manufacturer name and location for TightVNC.
- 36. Can "2 g of sodium hexametaphosphate/L" be edited as "2 g/L of sodium hexametaphosphate"?
- 37. Please clarify "(-)" in "where WSA = the index of water-stable aggregates (-)..."
- 38. "in three different moments" was changed to "at three different times" in "... at three different times during the experimental period..." Change ok?
- 39. "... and in three different moments ... " was edited as "... and at three different times ... " Change ok?
- 40. Please spell out "F crit" in Tables 2 and 3.
- 41. In Tables 2 and 3, please define SS, df, and MS.
- 42. "... this was compatible with what was stated by Shindi et al. (2011), Saad et al. (2011), high salinity treatment..." was edited as "... this was compatible with what was stated by Shindi et al. (2011) and Saad et al. (2011): that high salinity treatment..." Change ok?
- 43. Please provide a reference for Shindi et al. 2011.
- 44. Please clarify "have been frost" in "...layers 10 and 20 cm have been frost several times...." Can this be edited as "have experienced frost"?
- 45. Are "sustainable agriculture, quality of agricultural products, sustainable use of natural and landscape resources" the names of programs, or grants? If they are formal names, they should be changed to uppercase.
- 46. FAO was spelled out as "Food and Agriculture Organization" in the Allen et al. 1998, Ayers and Westcot 1985, and Brower et al. 1985 references, and Roma was changed to Rome. Please confirm these changes are correct.
- 47. Reference Krkavcova (2010) is not mentioned anywhere in the text. ASCE style requires that entries in the References list must be cited at least once within the paper. Please indicate a place in the text, tables, or figures where we may insert a citation to Krkavcova

(2010) or indicate if the entry should be deleted from the References list.

- 48. Reference Mihalikova et al. 2013 could not be located in the databases used by our system. While the reference may be correct, we ask that you check it so we can provide as many links to the referenced articles as possible.
- 49. Please provide issue number for Ref. Miháliková et al. (2013).
- 50. Please provide issue number for Ref. Moreira Barradas et al. (2012).
- 51. Reference Saad et al. 2011 could not be located in the databases used by the system. While the reference may be correct, we ask that you check it so we can provide as many links to the referenced articles as possible.
- 52. Page numbers were added to the Shinde et al. 2012 reference. Please confirm they are correct.
- 53. This reference Shinde et al. (2012) is not mentioned anywhere in the text. ASCE style requires that entries in the References list must be cited at least once within the paper. Please indicate a place in the text, tables, or figures where we may insert a citation to Shinde et al. (2012) or indicate if the entry should be deleted from the References list.
- 54. Please provide publisher location for Ref. USSLS (1969).